82 research outputs found

    Ground deformation measurements over Lake Trichonis based on SAR interferometry.

    Get PDF
    Ο σκοπός της παρούσας μελέτης είναι o εντοπισμός της παραμόρφωση του εδάφους στην ευρύτερη περιοχή της Λίμνης Τριχωνίδας (Δυτική Ελλάδα), εστιάζοντας κυρίως στο σεισμικό φαινόμενο του Απριλίου 2007 με την σμήνοσειρά σεισμών που σημειώθηκε στην περιοχή της λίμνης. Η περιοχή συνιστά μία pull-apart λεκάνη, η οποία παρουσιάζει γενικότερα μία έντονη σεισμική δραστηριότητα λόγο των δύο ενεργών ρηγμάτων κατά μήκος του βόρειου και νότιου περιθωρίου της. Η σμηνοσειρά ξεκίνησε με μικρού μεγέθους σεισμούς, στις 9 Απριλίου 2007 ενώ ακλούθησαν τρία ισχυρότερα σεισμικά γεγονότα στις 10 Απριλίου 2007, με μεγέθη που κυμαίνονται από 5,0 έως 5,2 Mw, τα οποία και αποτέλεσαν τα μεγαλύτερα ολόκληρης της ακολουθίας. Η σεισμική δραστηριότητα συνεχίστηκε για περισσότερο από ένα μήνα με μικρότερα σεισμικά γεγονότα. Βάσει των σεισμολογικών δεδομένων οριοθετήθηκαν δύο νέα κανονικά ρήγματα ΒΔ-ΝΑ διεύθυνσης κατά μήκος της νοτιοανατολικής όχθης της λίμνης. Χρησιμοποιώντας ένα σύνολο 28 εικόνων Ραντάρ, του δορυφόρου ENVISAT για την περίοδο από το Φεβρουάριο του 2003 μέχρι τον Φεβρουάριο του 2010 εφαρμόστηκε η τεχνική της διαφορικής συμβολομετρίας και πιο συγκεκριμένα διαφορετικές τεχνικές σώρευσης συμβολογραφημάτων με σκοπό την ανίχνευση και χαρτογράφηση των παραμορφώσεων του εδάφους που προκλήθηκε από την «σμηνοσειρά σεισμών». Σύμφωνα με τα αποτελέσματά των συγκεκριμένων τεχνικών αποδεικνύεται ότι η περιοχή παρουσιάζει εντελώς διαφορετικό καθεστώς εδαφικής παραμόρφωση κατά τη διάρκεια της προ-σεισμικής και μετα-σεισμικής περιόδου σε σχέση με την συν-σεισμική.The aim of this study is to detect and measure ground deformation over the broader area of Lake Trichonis (Western Greece), focusing mainly on the April 2007 earthquake swarm which occurred at the vicinity of the Lake. The area, forming a pull-apart basin, presented historically an intense seismic activity along the two active normal faults at the northern and southern part of the Lake. The swarminitiated by small magnitude events on the 8th of April 2007 followed by the three strongest events of the entire sequence on the 10th of April 2007, with magnitudes ranging from 5.0 to 5.2 Mw. The seismic activity continued for longer with smaller seismic events. Based on seismological data this activity was attributed to two unmapped NW SE trending normal faults that bounds the SE bank of the Lake. Using a dataset of 28 ENVISAT ASAR scenes covering the period from February 2003 until February 2010 (~7 yr), different Interferometric Stacking techniques was applied in order to quantify the ground deformation induced by the earthquake swarm as well as its effect on the inter-seismic deformation pattern of the area. Our results indicate that co-seismic motion differs significantly from that observedduring the pre- and post- swarm periods. The co-seismic pattern reveals subsidence at the northern and uplift at the southern lake sides, consistent with the structural model already proposed for the area. For the pre- and post-seismic periods both sides of the Lake show stability or low rates of subsidence with higher deformationvelocity rates for the period after the seismic activity, possibly attributed to postseismic relaxation. Our findings imply that inter-seismic ground deformation does not necessary follow the deformation pattern observed during seismic triggering, thus, long-term geodetic observations such as those provided by SAR interferometry are valuable in order to fully characterize the geodynamic behavior of an active region

    Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms

    Get PDF
    This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time

    Domino-style earthquakes along blind normal faults in Northern Thessaly (Greece): kinematic evidence from field observations, seismology, SAR interferometry and GNSS

    Get PDF
    Here we present a joint analysis of the geodetic, seismological and geological data of the March 2021 Northern Thessaly seismic sequence, that were gathered and processed as of April 30, 2021. First, we relocated seismicity data from regional and local networks and inferred the dip-direction (NE) and dip-angle (38°) of the March 3, 2021 rupture plane. Furthermore, we used ascending and descending SAR images acquired by the Sentinel-1 satellites to map the co-seismic displacement field. Our results indicate that the March 3, 2021 Mw=6.3 rupture occurred on a NE-dipping, 39° normal fault located between the villages Zarko (Trikala) and Damasi (Larissa). The event of March 4, 2021 occurred northwest of Damasi, along a fault oriented WNW-ESE and produced less deformation than the event of the previous day. The third event occurred on March 12, 2021 along a south-dipping normal fault. We computed 22 focal mechanisms of aftershocks with M≥4.0 using P-wave first motion polarities. Nearly all focal mechanisms exhibit normal kinematics or have a dominant normal dip-slip component. The use of InSAR was crucial to differentiate the ground deformation between the ruptures. The majority of deformation occurs in the vertical component, with a maximum of 0.39 m of subsidence over the Mw=6.3 rupture plane, south and west of Damasi. A total amount of 0.3 m horizontal displacement (E-W) was measured. We also used GNSS data (at 30-s sampling interval) from twelve permanent stations near the epicentres to obtain 3D seismic offsets of station positions. Only the first event produces significant displacement at the GNSS stations (as predicted by the fault models, themselves very well constrained by InSAR). We calculated several post-seismic interferograms, yet we have observed that there is almost no post-seismic deformation, except in the footwall area (Zarkos mountain). This post-seismic deformation is below the 7 mm level (quarter of a fringe) in the near field and below the 1 mm level at the GNSS sites. The cascading activation of the three events in a SE to NW direction points to a pattern of domino-style earthquakes, along neighbouring fault segments. The kinematics of the ruptures point to a counter-clockwise change in the extension direction of the upper crust (from NE-SW near Damasi to N-S towards northwest, near Verdikoussa)

    Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The collection of exhaled breath condensate (EBC) is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments.</p> <p>Methods</p> <p>EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB<sub>4</sub>, PGE<sub>2</sub>, 8-isoprostane and cys-LTs were determined.</p> <p>Results</p> <p>EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB<sub>4 </sub>and PGE<sub>2</sub>) or showed higher concentrations (8-isoprostane). However, NOx was detected only in EBC sampled by ECoScreen.</p> <p>Conclusion</p> <p>ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.</p

    Predicting range shifts of African apes under global change scenarios

    Get PDF
    Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa's current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad

    Mate-guarding constrains feeding activity but not energetic status of wild male long-tailed macaques (Macaca fascicularis).

    Get PDF
    Mate-guarding is an important determinant of male reproductive success in a number of species. Little is known however about the constraints of this behaviour, e.g. the associated energetic costs. We investigated these costs in long-tailed macaques where alpha males mate guard females to a lesser extent than predicted by the priority of access model. The study was carried out during two mating periods on three wild groups living in the Gunung Leuser National Park, Indonesia. We combined behavioural observations on males' locomotion and feeding activity, GPS records of distance travelled and non-invasive measurements of urinary C-peptide (UCP), a physiological indicator of male energetic status. Mate-guarding led to a decrease in feeding time and fruit consumption suggesting a reduced intake of energy. At the same time, vertical locomotion was reduced, which potentially saved energy. These findings, together with the fact that we did not find an effect of mate-guarding on UCP levels, suggest that energy intake and expenditure was balanced during mate-guarding in our study males. Mate-guarding thus seems to not be energetically costly under all circumstances. Given that in strictly seasonal rhesus macaques, high-ranking males lose physical condition over the mating period, we hypothesise that the energetic costs of mate-guarding vary inter-specifically depending on the degree of seasonality and that males of non-strictly seasonal species might be better adapted to maintain balanced energetic condition year-round. Finally, our results illustrate the importance of combining behavioural assessments of both energy intake and expenditure with physiological measures when investigating energetic costs of behavioural strategies

    Strategies for the Use of Fallback Foods in Apes

    Get PDF
    Researchers have suggested that fallback foods (FBFs) shape primate food processing adaptations, whereas preferred foods drive harvesting adaptations, and that the dietary importance of FBFs is central in determining the expression of a variety of traits. We examine these hypotheses in extant apes. First, we compare the nature and dietary importance of FBFs used by each taxon. FBF importance appears greatest in gorillas, followed by chimpanzees and siamangs, and least in orangutans and gibbons (bonobos are difficult to place). Next, we compare 20 traits among taxa to assess whether the relative expression of traits expected for consumption of FBFs matches their observed dietary importance. Trait manifestation generally conforms to predictions based on dietary importance of FBFs. However, some departures from predictions exist, particularly for orang-utans, which express relatively more food harvesting and processing traits predicted for consuming large amounts of FBFs than expected based on observed dietary importance. This is probably due to the chemical, mechanical, and phenological properties of the apes’ main FBFs, in particular high importance of figs for chimpanzees and hylobatids, compared to use of bark and leaves—plus figs in at least some Sumatran populations—by orang-utans. This may have permitted more specialized harvesting adaptations in chimpanzees and hylobatids, and required enhanced processing adaptations in orang-utans. Possible intercontinental differences in the availability and quality of preferred and FBFs may also be important. Our analysis supports previous hypotheses suggesting a critical influence of the dietary importance and quality of FBFs on ape ecology and, consequently, evolution

    Predicting range shifts of African apes under global change scenarios

    Get PDF
    Aim: Modelling African great ape distribution has until now focused on current or past conditions, while future scenarios remain scarcely explored. Using an ensemble forecasting approach, we predicted changes in taxon-specific distribution under future scenarios of climate, land use and human populations for (1) areas outside protected areas (PAs) only (assuming complete management effectiveness of PAs), (2) the entire study region and (3) interspecies range overlap. Location: Tropical Africa. Methods: We compiled occurrence data (n = 5,203) on African apes from the IUCN A.P.E.S. database and extracted relevant climate-, habitat- and human-related predictors representing current and future (2050) conditions to predict taxon-specific range change under a best- and a worst-case scenario, using ensemble forecasting. Results: The predictive performance of the models varied across taxa. Synergistic interactions between predictors are shaping African ape distribution, particularly human-related variables. On average across taxa, a range decline of 50% is expected outside PAs under the best scenario if no dispersal occurs (61% in worst scenario). Otherwise, an 85% range reduction is predicted to occur across study regions (94% worst). However, range gains are predicted outside PAs if dispersal occurs (52% best, 21% worst), with a slight increase in gains expected across study regions (66% best, 24% worst). Moreover, more than half of range losses and gains are predicted to occur outside PAs where interspecific ranges overlap. Main Conclusions: Massive range decline is expected by 2050, but range gain is uncertain as African apes will not be able to occupy these new areas immediately due to their limited dispersal capacity, migration lag and ecological constraints. Given that most future range changes are predicted outside PAs, Africa's current PA network is likely to be insufficient for preserving suitable habitats and maintaining connected ape populations. Thus, conservation planners urgently need to integrate land use planning and climate change mitigation measures at all decision-making levels both in range countries and abroad
    corecore